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Nonlinear Robust Observers for State-of-Charge Estimation of Lithium-Ion
Cells Based on a Reduced Electrochemical Model

Satadru Dey, Beshah Ayalew, and Pierluigi Pisu

Abstract— Advanced battery management systems rely on
accurate cell- or module-level state-of-charge (SOC) infor-
mation for effective control, monitoring, and diagnostics.
Electrochemical models provide arguably the most accurate and
detailed information about the SOC of lithium-ion cells. In this
brief, two nonlinear observer designs are presented based on
a reduced order electrochemical model. Both observers consist
of a Luenberger term acting on nominal errors and a variable
structure term for handling model uncertainty. Using Lyapunov’s
direct method, the design of the Luenberger term in each
observer is formulated as a linear matrix inequality problem,
whereas the variable structure term is designed assuming uncer-
tainty bounds. Simulation and experimental studies are included
to demonstrate the performance of the proposed observers.

Index Terms— Electrochemical model, lithium-ion (Li-ion)
batteries, nonlinear observer, single-particle model (SPM), state
of charge (SOC).

I. INTRODUCTION

L ITHIUM-ION (Li-ion) battery technology, the leading
energy storage solution for various applications, is still

suffering from the issues of safety, reliability, and high cost.
To ensure safe and efficient operation, advanced battery man-
agement systems are required, which in turn rely on estimates
of the state of charge (SOC) of each cell. There are several
technical challenges to the accurate estimation of SOC. These
challenges are mainly related to the scarcity of real-time
measurements and parametric uncertainties [1], [2]. In this
brief, we will focus on SOC estimation of an individual
Li-ion battery cell and address these challenges by propos-
ing observer designs based on uncertain electrochemical
models.

The different techniques that have been proposed for
SOC estimation in the literature can be broadly cate-
gorized into two categories: 1) open-loop model-based
approaches such as coulomb counting and open circuit
voltage (OCV) versus SOC map and 2) closed-loop model-
based approaches. However, coulomb counting is suscepti-
ble to measurement inaccuracies and the OCV-SOC map
technique is not realistic, as OCV is not measured in
real time. Closed-loop model-based approaches can further
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be divided into three categories depending on the type of
the model used: 1) data-driven model-based approaches [3];
2) equivalent circuit model (ECM)-based approaches [4], [5];
and 3) electrochemical model-based approaches. Although
the data-driven and ECM-based approaches are simple in
design and implementation, the drawbacks are extensive para-
meterization and lack of physical meaning of the model
parameters.

Electrochemical model-based approaches, which are derived
from principles of electrochemistry, are arguably more accu-
rate than the other modeling approaches and they possess
physical insight [6]. However, the complexity and compu-
tation burden of the full electrochemical model [known as
pseudo-2D (P2D) model [7]] requires some level of model
reduction for real-time implementable estimator designs. Some
SOC estimation techniques have been proposed using this
approach, including a residue grouping approach with a lin-
ear Kalman filter (KF) [8], particle filter (PF) [9], and a
Luenberger type Partial Differential Equation (PDE) observer
[10].

A particular reduction of the electrochemical model is
known as the single-particle model (SPM), where the elec-
trodes are approximated as spherical particles. A back-
stepping PDE estimator [1], an extended KF [11], [12],
and an Unscented Kalman Filter [13] have been used for
SPM-based SOC estimation. Some works proposed adaptive
SOC estimation to take care of the parametric uncertainty
using PF [14], adaptive PDE observer [15], and geometric
observer [16]. The authors also proposed SPM-based nonlinear
observer designs for SOC estimation [17] and adaptive sliding
mode observer [18] for simultaneous SOC and parameter
estimation.

The above review of the literature on electrochemical
model-based SOC estimators revealed one or more of the
following issues in existing approaches: 1) utilization of a
fully linearized model; 2) being computationally expensive;
and 3) lack of theoretical guarantees of the convergence of
the estimator. In this brief, we address the above issues by
extending [17], by: 1) including more details on modeling;
2) modifying the observer designs by adding a variable
structure term for robustness and reestablishing the conver-
gence conditions; and 3) providing experimental and additional
simulation results.

This brief discusses two SPM-based observer designs con-
sisting of a Luenberger term for the nominal model and
a variable structure term for robustness to uncertainties.
In each case, the design of the Luenberger term is cast as a
linear matrix inequality (LMI) problem, whereas the variable
structure term is designed by imposing bounds on the
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Fig. 1. Schematic of the SPM.

TABLE I

Li-ION BATTERY MODEL NOMENCLATURE

uncertainty. Both observers offer simple designs and theoreti-
cally verifiable error convergence. The observers’ performance
is verified via simulations and experiments.

The rest of this brief is organized as follows.
Section II reviews the Li-ion cell electrochemical model.
Sections III and IV formulate the details of the observer
designs. Sections V–VII present the simulation, experiments,
and conclusion, respectively.

II. LITHIUM-ION CELL ELECTROCHEMICAL MODEL

A. Single-Particle Model (SPM)

The SPM is the reduced electrochemical model adopted for
this brief. It is depicted by the schematic in Fig. 1 along with
the nomenclature in Table I.

The SPM is obtained by approximating the electrodes
as spherical particles along with volume-averaging assump-
tions [11], [12]. This approximation leads to two linear PDEs
describing the material diffusion in two particles representing

each electrode. The PDEs and their boundary conditions are
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where c±
s is the Li-ion concentration of the positive and

negative electrode and I is the charge/discharge current. The
specific surface area can be computed as a±

s = 3ε±
s /R±.

The output voltage map is derived using the Butler–Volmer
kinetics, electrical potential, and electrode thermodynamic
properties and is given by
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where c+
s,e and c−

s,e are the surface concentrations of the
positive and negative electrode, respectively; U+ and U−
are the open circuit potentials of the positive and negative
electrode, respectively; i±

0 are the exchange current densities
given by
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It is important to list some of the simplifying assumptions
imbedded in the SPM. First, the mass and charge dynamics
in the electrolyte are ignored. The charge in the solid material
is also ignored and the molar flux is averaged. Next, the
thermal effect is not considered. Moreover, the model may
lose its predictive capability at higher currents. In the existing
literature, there are some enhanced versions of the SPM
applicable to higher charge–discharge rates. For example, the
electrolyte concentration and potential dynamics are included
in [19] using polynomial approximation functions to extend
the applicability to higher charge–discharge rates. Similar
types of models are presented in [20] along with consideration
of nonuniform reaction distribution effects inside the electrode.
In [21], an enhanced SPM with electrolyte diffusion and
temperature-dependent parameters is presented. Despite these
enhancements to the conventional SPM, in this brief, we shall
work with the conventional form due to its suitability for the
analytical nonlinear observer designs we propose. Then, to
accommodate the limitations of the conventional SPM and
parametric variations, we add uncertainty-handling capability
in our observer designs.

B. Model Reduction and Finite-Dimensional Approximation

As the first step, we seek further reduction of the SPM,
to improve the weak observability of the SPM states from
differential voltage measurement [12]. We adopt the approach
in [1], where the positive electrode Li-ion concentration
is approximated as a function of the negative electrode
Li-ion concentration assuming conservation of the number
of Li-ions in the cell. This leads to observable forms for
Li-concentration states when the negative electrode diffusion
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PDE is discretized using the method of lines technique (based
on finite central difference method). The spatial domain is
discretized into (M + 1) nodes, where [cs0, cs1, . . . , cs M ] are
the Li-ion concentration states at the nodes (Fig. 1), which
leads to the following Ordinary Differential Equations:

ċs0 = −3acs0 + 3acs1

ċsm =
(

1 − 1

m

)
acs(m−1) − 2acsm +

(
1 + 1

m

)
acs(m+1)

ċs M =
(
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M

)
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(
1− 1

M

)
acs M −

(
1+ 1

M

)
bI

(4)

with m = 1, . . . , (M − 1), discretization step � = R/M ,
a = D−

s /�2, and b = 1/a−
s F�AL−. It is noted that the bulk

SOC information can be computed using some combination
of the states in (4), whereas cs M indicates the surface SOC.
The volume-averaged normalized bulk SOC can be computed
from the SPM (1) using the following formula:

SOCBulk = 1

4π R3c−
s,max

∫ R

0
4πr2c−

s (r, t)dr . (5)

This formula can also be used on the discretized SPM
in (4) to compute the bulk SOC of the cell as:
SOCBulk = {(4π�3)/(4π R3c−

s,max)}
∑M

j=1 j2cs j . The output
voltage equation can be formed from (2) by substituting
c−

s,e = cs M and c+
s,e = k1cs M + k2, where k1 and k2 are

constants in the algebraic relationship between the positive
and negative electrode Li-ion concentration. Following the
approach in [1], these constants can be derived considering
the conservation of the total number of the Li-ions with
∂/∂ t (nLi) = 0, where nLi is the total number of Li-ions.
Then, the positive electrode concentration can be computed as
c+

s,e = (1/ε+
s L+ A)(−ε−

s L− Acs M + nLi). Finally, the output
voltage expression is given by
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where i±
0 are the exchange current densities given by
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)
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III. STATE-SPACE MODEL FORMULATION AND ANALYSIS

The state-space model of the Li-ion cell can be written
compactly in the following form:

ẋ = Ax + Bu

y = h(x, u) (8)

where states x = [cs1, . . . , cs M ]T ∈ RM , input current
u = I ∈ R, output voltage y = V ∈ R, the matrices A and B
are derived from (4), and the output function h is formed
by (6). The state-space model (8) represents a linear dynamics

Fig. 2. Output voltage ( y) as a function of state (xM).

with a nonlinear output map. The estimation problem is to
reconstruct the states of (8) using the output measurement.

Remark 1: Note that for the particular discretization
adopted, the dynamics of the zeroth node (boundary node
at r = 0) does not affect the state dynamics at the rest
of the nodes, as can be observed in (4). This leads to
unobservability of the state-space model when the equation
for the zeroth node is included. However, by simply dropping
this equation, we obtain an observable state-space model as
given in (8). The observability of this nonlinear system has
already been verified in [12]. If of interest, the zeroth node
state could be approximated afterwards from the estimate
of the state at the first node via an open-loop observer
using the first equation in (4). The asymptotic convergence
rate of the estimation error for the open-loop zeroth node
observer will depend on the eigenvalue (−3a) of the first
equation in (4).

Remark 2: The output function h of the system is shown
in Fig. 2 (with respect to xM) for some given input. Given
any input current u∗, the output function h(xM , u∗) retains
the strictly increasing trend with respect to xM . This has
been verified by numerous offline simulation studies. It is
also evident from Fig. 2 that the output function can be
taken to be continuously differentiable with respect to the
state within the operating region, which serves as a sufficient
condition for Lipschitz continuity [22]. An estimate of the
Lipschitz constant can be found as the max(‖∂h/∂x‖) within
the operating region.

Remark 3: From the monotonicity observation above
(or Fig. 2), we can infer that for any given u = u∗ and any
two different points in the state-space x (1)

M and x (2)
M , the

following is always true:
sgn

(
h
(
x (1)

M , u∗) − h
(
x (2)

M , u∗)) = sgn
(
x (1)

M − x (2)
M

)
. (9)

Remark 4: To accommodate model (SPM) limitations and
parametric uncertainties, we include unknown but bounded
uncertainties in the nominal model (8) as follows:

ẋ = Ax + Bu + �u(x, u)

y = h(x, u) + η(x, u) (10)

where �u and η represent state and/or input dependent uncer-
tainties in state dynamics and the output, respectively.

IV. NONLINEAR OBSERVER DESIGNS

In this section, the details of the two observer designs are
presented based on the uncertain model (10).
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A. Observer Design I

In this first design, the observer structure is chosen as

˙̂x = Ax̂ + Bu + L1(y − ŷ) + Lv sgn(y − ŷ)

ŷ = h(x̂, u) (11)

where L1 ∈ RM×1 is a constant gain representing the
Luenberger term and Lv ∈ RM×1 is a constant gain
representing the variable structure term. Both gains have
to be designed to ensure the convergence of the estimation
error dynamics even in the presence of uncertainties.
Subtracting (11) from (10), the estimation error dynamics of
the observer can be written as

˙̃x = Ax̃ + �u − L1(h̃ + η) − Lv sgn(h̃ + η) (12)

where x̃ = x − x̂ and h̃ = h(x, u) − h(x̂, u).
To analyze the stability of the error dynamics, a Lyapunov

function candidate V = x̃ T Px̃ is chosen, where P is an
unknown positive definite symmetric matrix. The derivative
of the Lyapunov function candidate is given as

V̇ = x̃ T [AT P + P A]x̃ − x̃ T P(L1h̃) − (L1h̃)T Px̃

+ 2x̃ T P(�u − L1η) − 2x̃ T P Lv sgn(h̃ + η). (13)

Now, we separate V̇ into two parts: V̇1 involving the nomi-
nal error without uncertainty and V̇2 involving the uncertainty

V̇1 = x̃ T [AT P + P A]x̃ − x̃ T P(L1h̃) − (L1h̃)T Px̃ (14)

V̇2 = 2x̃ T P(�u − L1η) − 2x̃ T P Lv sgn(h̃ + η). (15)

Next, we investigate the negative definiteness of V̇1 and
V̇2, separately. Considering V̇1 first, to be negative definite,
V̇1 needs to satisfy the following condition:

−[ x̃ T zT ]
[

AT P + P A −P
−P 0

] [
x̃
z

]
> 0 (16)

where z = L1h̃. The previously mentioned Lipschitz conti-
nuity condition (Remark 2) on the output function h can be
written as

‖h̃‖ ≤ γ ‖x̃‖ (17)

where γ is the Lipschitz’s constant. We assume that (17) holds
uniformly in u, and to determine γ, we impose boundedness
on the input current u. Using Holder’s inequality and Lipschitz
continuity condition

‖z‖ ≤ ‖L1‖‖h̃‖ ⇒‖z‖ ≤ γ ‖L1‖‖x̃‖ ⇒ zT z ≤ γ 2 LT
1 L1 x̃ T x̃ .

(18)

By adding a new (tuning) term, this condition can be
modified as

zT z − x̃ T [(
γ 2 LT

1 L1
)
I
]
x̃ ≤ −zT M1z (19)

where M1 is some known positive definite matrix of the
designer’s choice and I is an identity matrix. Inequality (19)
can be written as

[ x̃ T zT ]
[ (

γ 2 LT
1 L1

)
I 0

0 −I − M1

] [
x̃
z

]
≥ 0. (20)

Therefore, for the nominal dynamics of the system repre-
sented by V̇1 to converge to zero asymptotically, the following
matrix inequalities must be satisfied for any suitable positive
definite M1 of the designer’s choice:

P > 0, −
[

AT P + P A −P
−P 0

]
> 0

[ (
γ 2 LT

1 L1
)
I 0

0 −I − M1

]
≥ 0. (21)

Using the s-procedure in [23], the second and third matrix
inequalities of (21) lead to the condition

−
[

AT P + P A + (
τγ 2 LT

1 L1
)
I −P

−P −τ (M1 + I )

]
> 0 (22)

with some multiplier coefficient τ ≥ 0. These matrix inequal-
ities can be solved using MATLABs LMI Toolbox posing the
problem in the following form:

[
AT P + P A + Q −P

−P −SM2

]
< 0; Q, S, P > 0 (23)

where P is an unknown symmetric positive definite matrix,
Q = q I (with scalar q = (τγ 2 LT

1 L1) as the element along
the diagonal) and S = τ I are unknown positive definite diag-
onal matrices with same elements along their diagonal, and
M2(=M1+I > I ) is a positive definite matrix of the designer’s
choice. The feasible solution of this LMI problem will result in
negative definite V̇1, which guarantees asymptotic convergence
of the estimation error for the nominal model. The unknown
observer gain vector can be solved for from the following:

LT
1 L1 = q

τγ 2 . (24)

The tuning mechanisms of this design procedure are the
choice of M2 and choice of individual observer gain vector
elements based on the condition (24).

Next we consider V̇2, which involves the uncertainties

V̇2 = 2x̃ T P(�u − L1η) − 2x̃ T P Lv sgn(h̃ + η). (25)

Under the condition ‖h̃‖ ≥ ‖η‖ (to be discussed below), the
following is true:

sgn(h̃ + η) = sgn(h̃). (26)

Then, V̇2 can be written as

V̇2 = 2x̃ T P(�u − L1η) − 2x̃ T P Lv sgn(h̃)

⇒ V̇2 = 2x̃ T P(�u − L1η) − 2x̃ T P Lv
h̃

‖h̃‖ . (27)

From Remark 3, the following can be written:

sgn(h̃) = sgn(x̃M ) ⇒ h̃

‖h̃‖ = x̃M

‖x̃M‖ = Cx̃

‖Cx̃‖ (28)

where C = [0, . . . , 0, 1]. Now we choose Lv = K P−1CT ,
where P comes from the solution of the LMI (23) and K is
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TABLE II

SYSTEMATIC DESIGN PROCEDURE FOR OBSERVER I

a scalar parameter to be designed. Therefore, V̇2 becomes

V̇2 = 2x̃ T P(�u − L1η) − 2x̃ T P Lv
Cx̃

‖Cx̃‖
⇒ V̇2 = 2x̃ T P(�u − L1η) − 2K x̃ T P P−1CT Cx̃

‖Cx̃‖
⇒ V̇2 = 2x̃ T P(�u − L1η) − 2K

(Cx̃)T Cx̃

‖Cx̃‖
⇒ V̇2 ≤ 2‖x̃‖‖P‖‖�u − L1η‖ − 2K‖Cx̃‖. (29)

Now, based on the selection of some high value of K , V̇2 will
decrease as long as the following condition is satisfied:

K ≥ ‖x̃‖‖P‖‖�u − L1η‖
‖Cx̃‖ . (30)

Therefore, from the overall analysis of V̇2, it can be concluded
that V̇2 will decrease until (26) or (30) is not satisfied.
This leads to x̃ settling on an error ball determined by the
uncertainties and observer gains.

Now, consider the overall Lyapunov function derivative
V̇ = V̇1 + V̇2. We have proved the asymptotic convergence
of the nominal part to zero and convergence of the uncertain
part to a certain error ball. Therefore, the estimation error will
converge to a certain error ball in the presence of uncertainty.
The systematic design procedure is summarized in Table II.

Note: An estimate of the values ‖Δu‖max and ‖η‖max
can be derived offline by comparing the open-loop SPM
(open-loop indicates model without any measurement feed-
back in it) data with experimental or high-fidelity model (e.g.,
P2-D) data. For example, the two-norm of the error between
averaged values of the states from the SPM and P2-D model
can be recorded under different operating conditions and the
maximum value of the two-norm multiplied by ‖A‖ can be
used as ‖Δu‖max. A similar method can be applied to the volt-
age data and subsequently derive ‖η‖max. Similar approaches
can be applied using experimental data of bulk SOC (from

accurate current measurement) and voltage. However, these
estimates are conservative in nature and serve only as rough
estimates.

B. Observer Design II

The drawback of a constant gain observer is that it will
feed the output error with the same amplification throughout
the state trajectory. In the state space, where the sensitivity
of the output with respect to the states is very low (such as
middle part of state region in Fig. 2), use of constant gain tends
to inject noise/disturbance without any useful information.
In this region, a constant gain could be disadvantageous. This
fact motivates to have a gain-scheduled observer whose gain
varies depending on the region of the state space. In this
design, the output Jacobian is used to weigh the Luenberger
gain leading to the following structure [24]:

˙̂x = Ax̂ + Bu + L2

[
∂h

∂x

]T

x=x̂,u
(y − ŷ) + Lvsgn(y − ŷ)

ŷ = h(x̂, u) (31)

where L2 ∈ RM×M is the gain representing the Luenberger
term and it is a constant weighted by the output Jacobian
[∂h/∂x] ∈ R1×M , and Lv ∈ RM×1 is a constant gain
representing the variable structure term.

Subtracting (31) from (10), the estimation error dynamics
of the observer can be written as

˙̃x = Ax̃ +�u − L2

[
∂h

∂x

]T

x=x̂,u
(h̃ + η) − Lv sgn(h̃ + η) (32)

where x̃ = x − x̂ and h̃ = h(x, u) − h(x̂, u).
Again, a Lyapunov function candidate V = x̃ T Px̃ is chosen

to analyze the convergence of the observer error dynamics,
where P is an unknown positive definite symmetric matrix.
The derivative of the Lyapunov function candidate is given as

V̇ = x̃ T [AT P + P A]x̃ − 2x̃ T P L2

[
∂h

∂x

]T

h̃

+2x̃ T P

(
�u −L2

[
∂h

∂x

]T

η

)
−2x̃ T PLvsgn(h̃+η). (33)

As before, we separate V̇ into two parts: V̇1 involving
the nominal error without uncertainty and V̇2 involving the
uncertainty

V̇1 = x̃ T [AT P + P A]x̃ − 2x̃ T P L2

[
∂h

∂x

]T

h̃ (34)

V̇2 = 2x̃ TP

(
�u −L2

[
∂h

∂x

]T

η

)
− 2x̃ T PLvsgn(h̃+η). (35)

Considering V̇1 first, the following condition is imposed to
ensure the negative definiteness of the first term:

x̃ T [AT P + P A]x̃ ≤ −x̃ T Qx̃ − x̃ T P M3 Px̃ (36)

where Q and M3 are positive definite matrices of the
designer’s choice. The idea is to find a positive definite
symmetric matrix P that satisfies (36). Assuming that such
P exists, the estimator gain matrix is chosen as L2 = P−1.
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TABLE III

SYSTEMATIC DESIGN PROCEDURE FOR OBSERVER II

This choice of estimator gain matrix makes the second term
of (34) equal to 2x̃ T [∂h/∂x]T h̃. Now, consider the fact that
h is a strictly increasing function of only the end state
(xMcs M ). This makes the xM estimation error and output
error sign always the same throughout the state trajec-
tory (Remark 3). In addition, the Jacobian ∂h/(∂xM)
is always positive in the operating region. The second
term on the right-hand side of (34) can be written as:
2[x̃1, . . . , x̃M ][0, 0, . . . , (∂h/∂xM )]T h̃ = 2x̃M (∂h/∂xM)h̃.
Now, x̃M h̃ ≥ 0 at any point of the state space as the
signs of x̃M and h̃ are always the same (Remark 3) and
∂h/∂xM is always positive (Fig. 2). This leads to the fact
that 2x̃ T [∂h/∂x]T h̃ ≥ 0 at any point of the state space.
Now, it is clear that the first two terms in V̇1 are negative
definite and the third term is negative semidefinite. This leads
to a negative definite V̇1, which is a sufficient condition for
asymptotic convergence of the observer error for the nominal
model. Therefore, the design of Luenberger observer boils
down to finding a positive definite symmetric matrix P that
satisfies (36). This can be cast as an LMI problem using Schur
complements[

AT P + P A + Q P
P −M−1

3

]
< 0; P > 0. (37)

Then the observer gain matrix can be obtained as
L2 = P−1. The tuning mechanisms for this design are the
choices of Q and M3.

The analysis and design for the uncertain part of the error
dynamics represented by V̇2 is the same as that of Observer
Design I. Considering the overall Lyapunov function deriva-
tive, we conclude that the estimation error will converge to a
certain error ball in the presence of uncertainty. The systematic
design procedure is given in Table III.

V. SIMULATION STUDIES

In this section, we present simulation results to demon-
strate the effectiveness of the observers. For these simu-
lation studies, the battery cell (metal–oxide positive elec-
trode, graphite negative electrode, cell capacity 6 Ah) model
parameters have been taken from [8]. We will show the

Fig. 3. Comparison of Observers I and II state estimation error convergence
under 5C discharge. Temperature: 25 °C. Initial estimation error: 40%.

results in terms of normalized bulk concentration of Li-ions
(bulk SOC) and output voltage estimation. A third-order model
(discretizing the particle radius into four nodes) has been
used. In Observer I, the Luenberger gain vector elements
are chosen as L∗= [0, 0, (LT L)1/2]T

, where (LT L)1/2 = 0.1.
For Observer II, the Luenberger gain matrix is chosen as:
L∗

2 = 0.07 ∗ ones(3, 3).
First, the difference between Observers I and II is shown

in Fig. 3 using SPM as plant model by showing their
state estimation error at three different operating points.
For illustration purposes, the same gains are used for
Observers I and II so that they result in the same error
convergence rate without weighing the Jacobian. Remember
that Observer I uses the constant gain as it is, whereas
Observer II has that gain weighted by the output Jacobian.
In operating point 1 (OP 1) and operating point 3 (OP 3),
Observer II has higher gain due to high sensitivity of the
output Jacobian with respect to the state leading to faster
convergence. In operating point 2 (OP 2), Observer II has
lower gain due to low sensitivity of output Jacobian leading
to slower convergence.

Fig. 4 shows the performance of the observers in the
presence of uncertainty and initial condition error with the
SPM as the plant. The variable structure gain parameter for
both Observers I and II is chosen as K = 0.01. To emulate
the uncertainty, we initialize the observers with the following
parameter values: D−

s,observer = 100D−
s , a−

s,observer = 0.01a−
s ,

R f,observer = 0.5R f , and we add 5 mV noise in voltage
measurement. As expected, even with the variable structure
term, the estimation errors do not converge to zero due to
output uncertainties.

Next, the performances of the observers are shown with a
full-order P2-D model as the plant in Fig. 5. This illustration
is provided to test the observers’ capability in the presence of
modeling uncertainties. The averaged normalized Li-ion con-
centration of the P2-D model’s negative electrode is compared
with the averaged Li-ion concentration from the observer and
the steady-state error lies within 9%.

VI. EXPERIMENTAL RESULTS

In this section, we present results from experimental studies
on the proposed observer designs applied to a commercial
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Fig. 4. Performance of the observers with and without the variable structure
term in the presence of uncertainty in state dynamics and output channel.
L: Luenberger term. L + VS: Luenberger and the variable structure term.
Current profile: 8.3C discharge. Temperature: 25 °C. Initial SOC: 45%. Initial
estimation error: 20%.

Fig. 5. Performance of the observers with P2-D model as the plant. Current
profile: 5C discharge. Temperature: 25 °C. Initial SOC: 45%. Initial estimation
error: 30%.

high-power LiFePO4-graphite cell (capacity 2.3 Ah). First,
some of the model parameters of (8) have been identified
experimentally while others were adopted from available lit-
erature for this specific cell. To simplify the model to be
fitted, we follow the assumption of constant exchange current

TABLE IV

MODEL PARAMETERS. F DENOTES FITTED VALUES

Fig. 6. Voltage response for pulse discharge test. Temperature: 25 °C. Initial
SOC: 45%. Initial estimation error: 40%.

densities, as done in [25] and [26]. The following parameters
are identified: D−

s , i+
0 , i−

0 , R f , k1, and k2 solving a nonlinear
least square optimization problem. The values of the identified
parameters are provided in Table IV. From the comparison of
the open-loop model and the experimental data, the estimates
of the variables ‖�u‖max and ‖η‖max are found as 2e-4 and
0.15, respectively. Here open loop indicates model without any
measurement feedback in it.

To show the open-loop model validation and observer
performance for SOC tracking, pulse discharge experiments
are conducted. Observer II has been used for these experiments
with both Luenberger and variable structure terms. To compute
the actual bulk SOC of the cell, we used coulomb counting
technique as in our experiments we have a high accuracy
current measurement [10]. The results of the pulse discharge



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 7. SOC response for pulse discharge test. Temperature: 25 °C. Initial
SOC: 45%. Initial estimation error: 40%.

test are shown in Figs. 6 (voltage response) and 7 (SOC
response). Note that the open-loop model error in Fig. 6 is
higher and shoots up toward the end, i.e., the low SOC region.
However, the observer is able to overcome this uncertainty,
producing more accurate voltage response. Note that there
are visible spikes in the voltage errors which are due to
the discontinuities in the voltage response owing to input
discontinuities. As expected, the observer tracks the voltage
with sufficient accuracy. The steady-state value of the SOC
estimation error is within a 5% band.

VII. CONCLUSION

In this brief, two nonlinear robust observer designs have
been presented for SOC estimation of Li-ion cells using an
uncertain reduced electrochemical model given in the form
of the SPM. The structure of both observers contains a Luen-
berger term for convergence of nominal error dynamics and
a variable structure term to improve robustness toward model
limitations/uncertainties. Simulation studies and experiments
are presented to show the effectiveness of the observer designs.

However, there are some issues in the proposed designs that
need further investigations. First, more experimental testing is
needed especially with higher C-rates to completely validate
the performance and limitations of the observers. In simulation
studies, it is observed that the performance of the observers
degrades for higher C-rates, especially in the presence of high
output uncertainties. Second, thermal effects, which can play
an important role particularly in a high-current scenario, are
not included in the presented formulations. Finally, the variable
structure term performs well in the presence of uncertainties in
state dynamics while its performance is limited in the presence
of output uncertainties.
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